FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21Cip1/Waf1

نویسندگان

  • David E.A. Kloet
  • Paulien E. Polderman
  • Astrid Eijkelenboom
  • Lydia M. Smits
  • Miranda H. vanTriest
  • Maaike C.W. vandenBerg
  • Marian J. Groot Koerkamp
  • Dik vanLeenen
  • Philip Lijnzaad
  • Frank C. Holstege
  • Boudewijn M.T. Burgering
چکیده

Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma.

MicroRNAs (miRNAs) are small non-coding RNA molecules that are often located in genomic breakpoint regions and can act as oncogenes or tumor suppressor genes in human cancer. Our previous study showed that microRNA-423 (miR-423), which localized to the frequently amplified region of chromosome 17q11, was upregulated in hepatocellular carcinoma (HCC). However, the potential functions and exact m...

متن کامل

CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells.

Cip1-interacting zinc finger protein 1 (CIZ1) is a nuclear protein that was observed to bind to p21Cip1/Waf1. p21Cip1/Waf1 regulates the cell cycle and is associated with colorectal cancer (CRC) progression. However, the effect of CIZ1 on CRC cells remains unclear. In the present study, CIZ1 was observed to be highly expressed in RKO human CRC cells. Silencing of CIZ1 using small interfering RN...

متن کامل

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract

Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...

متن کامل

CDC20 maintains tumor initiating cells

Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragi...

متن کامل

Silencing RhoA inhibits migration and invasion through Wnt/β-catenin pathway and growth through cell cycle regulation in human tongue cancer.

Ras homolog gene family member A (RhoA) has been identified as a critical regulator of tumor aggressive behavior. In this study, we assessed the role of RhoA in the mechanisms underlying growth, migration, and invasion of squamous cell carcinoma of tongue (TSCC). Stable RhoA knockdown of TSCC cell lines SCC-4 and CAL27 were achieved using Lentiviral transfection. The effects of RhoA depletion o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 469  شماره 

صفحات  -

تاریخ انتشار 2015